Herstellung von Diamantschichten und deren Einsatz in der Festkörperphysik

Jürgen Ristein

Institut für Technische Physik Universität Erlangen-Nürnberg

Programm

- Herstellung von Diamantschichten
- Diamantschichten als Halbleiter:
- Dotierung
- Schottky-Dioden
- Feldeffektstrukturen
- Besondere Oberflächeneigenschaften: Elektronenaffinität und Oberflächenleitfähigkeit

<u>Key Material Parameters of Diamond and</u> <u>Competing Semiconductors</u>

	Diamond	Si	b -SiC	h-GaN	c-BN
fcc lattice constant (Å)	3.56	5.43	4.36	3.2/5.2*	3.62
density (gcm ⁻³)	3.515	2.4	3.216	6.1	3.49
energy gap (eV)	5.48	1.107	2.86	3.5	6.4
dielectric constant	5.8	11.8	9.7	10	7.1
refractive index (at 589 nm)	2.42	3.5	2.65	2.3	2.1
electron mobiliy (cm ² /(Vs))	2200	1500	400	100	-
hole mobility (cm ² /(Vs))	1800	495	50	-	-
breakdown field strength (MV/cm)	10	0.3	4	-	-
hardness (kg/mm ²)	10000	1000	3500	-	6500
heat conductivity (W/(Kcm))	20	1.5	5	1.3	-

Temp.: 850 °C

<u>Mikrowellen-Plasma Depositionsanlage zur</u> <u>Gasphasenabscheidung von Diamant</u>

Hetero-epitaxial CVD Diamond Layers

Scanning Electron Micrograph (SEM) of a state of the art hetero-epitaxial CVD diamond film (a) on a Si (111) and (b) on a silicon (100) substrate. The homogenous orientation of the large crystallites forming the surface of the films (especially panel b) is achieved by overgrowing misoriented nuclei through an appropriate choice of the deposition parameters. As a consequence the first few hundred nm of the diamond film contain predominantly small crystallites of random orientation and a high volume fraction of grain boundaries with non-diamond material in between (panel c). The thickness of the films in a.) and b.) is about 80µm

Halbleiter:

Bezeichnung für alle kristallinen Stoffe, die sich bei tiefen Temperaturen wie Isolatoren verhalten, bei Zimmertemperatur eine merkliche Leitfähigkeit zeigen und deren Widerstand mit zunehmender Temperatur abnimmt.

Meyers Grosses Taschenlexikon, Mannheim 1983

$$V_{1Elektron} \approx 10^{-20} \text{ cm}^3 \times \text{e}^{20 \cdot (\text{E}_G/\text{eV})}$$

-

Doping of Semiconductors

p-n junction

Doping of Silicon

• • Ref. p. 77]

1.2 Silicon (Si)

Fig. p. 363

= **B** + [S(1999)

Impurity	Ionization energy	Remarks	
		iveniar KS	Ket.
V ₂	$E_{\rm c} = 0.24$	di-vacancy. V_2^-	76E
	$E_{\rm c} = 0.23$	di-vacancy, V_2^-	78K
	$E_{\rm c} = 0.43$	V_2^0 , stable at RT, anneals at 610 K	76E
	$E_{\rm c} = 0.41$	V_2°	78K
	$E_v + 0.20$	V_2^+ , anneals at 570 K	76K4
	$L_{v} + 0.21$		78K
V	$E_{v} + 0.13$	V ⁺⁺ , negative Hubbard-U V ⁺ metastable	80W1
Ge		isoelectronic, substitutional	
	$E_{\rm c} - 0.14$	acceptor, implantation, anneals at 500 °C	7382
	$E_{\rm c} - 0.27$	donor	72F, 73S2
	$E_{\rm c} - 0.55$	donor, implantation, anneals at 500 °C	
Sn	$E_{\rm v} - 0.17$	MOS-CV, implantation	72F
	$E_{v} + 0.37$	anneals at 500 °C	/ 41
Sn – V	$E_{1} + 0.32$	$Sn = V^+$ anneals at SOO K	7070
	$E_{v} + 0.07$	$Sn = V^{++}$	1912
РЬ	$E_{\rm c} - 0.17$	ion implantation, anneals at 500 °C MOS-CV	72H
ï	$E_{\rm c} = 0.21$	ion implantation, anneals at 500 °C	72F
group V			
1	$E_{c} = 0.14$	donor, substitutional	73M
	$E_{\rm s} = 0.045$	N ⁻ -center [74P]	680 687
,	$E_{c} = -0.0453$	donor, substitutional	56D 65A 1
•	E = 0.0458	IR-absorption + electrical, Fig. 19	50F, 05A2
-	$E_{c} = 0.0450$	IK-absorption, 4 K	79 P1
	$E_{\rm c} = 0.0037$	photoconductivity, 1.6 K	76N2, 77N2
– V	$E_{\rm c} = 0.40$	E-center, anneals at 420 K	69K
s	$E_{c} = -0.0537$	substitutional donor, IR-absorption	56P, 65A2
	$E_{c} = -0.05377$	IR-absorption, 4 K	79 P1
s – V	$E_{-} - 0.47$	E-center, anneals at 450 K	70772
.	F = 0.0427	substitutional dance	1712
	L 0.0721	IR-absorption	65A2
	$E_c \rightarrow 0.04277$	IR-absorption, 4 K	79P1
v – V	$E_{\rm c} = 0.44$	E-center, anneals at 460 K	79T2
i	$E_{\rm c} - 0.0706$	substitutional donor, IR-absorption	59H
	$E_{c} = -0.069$	electrical	7651
	$E_{c} = -0.0710$	IR-absorption 4 K	7001
	E = 0.49	MOS CV ion implantation	/771
	$E_{\rm v} + 0.40$	anneals at 500.°C	72 F
a •	$E_{\rm c} - 0.14$ $E_{\rm c} - 0.43$	MOS-CV, ion implantation, anneals at 500 °C	72F

= 80 (18) Σ

 $\Sigma_{sic} = 6$

SDia

The Hall Experiment

$\mathbf{j} = \mathbf{e} \cdot \mathbf{v} \cdot \mathbf{p}$	$= \mathbf{e} \cdot \mathbf{p} \cdot \mathbf{\mu} \cdot \mathbf{E}_{\mathrm{D}}$
	• •

$$F_{L} = \underbrace{\mathbf{e} \cdot \mathbf{v}}_{\mathbf{j/p}} \cdot \mathbf{B} = \mathbf{e} \cdot \underbrace{\mathbf{E}}_{\mathbf{H}} = \underbrace{\mathbf{F}}_{\mathbf{el}}$$

-

$$\rightarrow \frac{E_{H}}{j \cdot B} = H = \frac{1}{e \cdot p}$$

$$\rightarrow \frac{j}{E_{D}} \cdot H = \mu$$

Phosphorous Doping of Diamond

S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Appl. Phys. Lett. 71, 1065 (1997)

S. Koizumi, M. Kamo, Y. Sato, S. Mita, A. Sawabe, A. Reznik, C. Uzan-Saguy, R. Kalish, Diam. Rel. Mat. 7, 540 (1997)

Field Effect Transistor

The Diamond Surface-Channel FET

H. Kawarada, M. Aoki, M. Ito, Appl. Phys. Lett. 65, 1563 (1994)

P. Gluche, A. Aleskov, A. Vescan, W. Ebert, E. Kohn IEEE Electr. Device Lett. 18, 547 (1197)

K. Hayashi, Sadanori Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, K. Kajimura, J. Appl. Phys. 81, 744 (1997)

Electron Affinity and Surface Fermi Level Position

<u>Hydrogen Adsorption $\leftarrow \rightarrow$ Electron Affinity</u>

Charge transfer due to different electronegativities: \rightarrow each C-H bond carries a dipole moment p

$$e\Delta U = \chi(n) - \chi_0 = -\frac{e}{\varepsilon_0} \cdot n \cdot p \cdot f(n)$$

with the depolarization function as a small correction* * J. Topping, Proc. Royal Soc. London, A 114, (1927) Tunnelstrom durch Schottky-Diode auf n-Typ Halbleiter:

Vorwärtsstrom durch Schottky-Diode auf p-Typ Halbleiter:

